Defect Quantification in Metal Halide Perovskites Anticipates Photoluminescence and Photovoltaic Performance ACS Energy Letters, 2024, 9, 1, 243–252. https://doi.org/10.1021/acsenergylett.3c02157
How Low Can You Go? Defect Quantification at the 1015 cm–3 Level in Mixed-Cation Perovskites Using Differential Pulse Voltammetry, ACS Energy Letters, 2022, 7, 11, 4017-4027. https://doi.org/10.1021/acsenergylett.2c02033
Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells Science, 2021, 375, 6576, 71-76. https://doi.org/10.1126/science.abj2637
Rationalizing energy level alignment by characterizing Lewis acid/base and ionic interactions at printable semiconductor/ionic liquid interfaces Materials Horizons, 2022, 9, 471-481. https://doi.org/10.1039/D1MH01306H
High-performance methylammonium-free ideal-band-gap perovskite solar cells. Matter, 2021, 4, 4, 1365-1376. https://doi.org/10.1016/j.matt.2021.01.003
Defect quantification in metal halide perovskites: the solid-state electrochemical alternative Energy Environmental Science, 2021, 14, 4840-4846. https://doi.org/10.1039/D1EE01525G
Surface-Activated Corrosion in Tin–Lead Halide Perovskite Solar Cells ACS Energy Letters, 2020, 5, 11, 3344-3351. https://doi.org/10.1021/acsenergylett.0c01445
Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells, Joule, 2020, 4, 8, 1759-1775. https://doi.org/10.1016/j.joule.2020.06.004